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Integrable non-linear evolutions in 2 + 1 dimensions with 
non-analytic dispersion relations 

M Boitit, J J-P Leonf, L Martinat and F Pempinellit 
t Dipartimento di Fisica dell’Universita and Sezione INFN di Lecce, 73100 Lecce, Italy 
$ Laboratoire de Physique MathimatiqueB, Universite des Sciences et Techniques du 
Languedoc, 34060 Montpellier Cedex, France 

Received 2 March 1988 

Abstract. We develop a method of obtaining two-dimensional integrable evolutions corre- 
sponding to singular dispersion relations. The method is applied to the 2 x 2 linear first-order 
eigenvalue problem and the inverse spectral transform scheme is established. The Backlund 
transformation and non-linear superposition formula are used to obtain the soliton 
solutions. 

1. Introduction 

We are interested here in building non-linear evolutions in 2+ 1 dimensions (x, y ;  t )  
corresponding to singular dispersion relations (non-analytic functions of the spectral 
parameter). 

The differential analysis in the complex plane (a method) which has been applied 
for solving non-linear evolutions in 2 + 1 dimensions with polynomial dispersion 
relations [ 1-61 has proved to be very useful in considering, in 1 + 1 dimensions, the 
classes of evolutions having a non-analytic dispersion relation [7]. 

The spectral transform method has been known since 1973 to be applicable to 
evolutions with singular dispersion relations [8- lo], and to lead to physically relevant 
equations (Maxwell-Bloch equations for a medium consisting of inhomogeneously 
broadened and non-degenerate two-level atoms). Recently, however, a new solvable 
evolution of this class has been found [ l l ] .  Using the method of [7] it is now possible 
to build such evolutions very easily, together with their Backlund transformations 

We show here that the approach can be extended to 2 1  1 dimensions where the 
evolutions still present the feature of a system of coupled differential equations with, 
however, a more complicated dependence on the spectral parameter involving Cauchy- 
like integrals. 

The main tool is the a approach of solvable evolutions as systematically developed 
in [ 13,141 which makes explicit use of the asymptotic expansions in the neighbourhood 
of the boundaries of the complex domain. 

The general method is presented in § 2 where the construction of a Lax pair ( T,,  T 2 )  
of commuting spectral operators is performed. The principal spectral operator T, is 
chosen to be the generalisation of the Zakharov-Shabat operator in the plane [4]. The 

[7,121. 
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auxiliary spectral operator T,, which fixes the time evolution, is obtained by means 
of the solution of a linear singular integral equation. This has to be contrasted with 
the situation in 1 + 1 dimensions where T2 is explicitly given [7]. 

In P 3 we obtain explicit solvable non-linear evolutions which in one spatial 
dimension reduce to the ‘self-induced transparency’ [ 81 or ‘reduced Maxwell-Bloch’ 
[9] equations. These new two-dimensional solvable evolutions arise then as natural 
extensions of physically relevant systems and do show the same essential property of 
having exponential damping (attenuator [lo])  or growth (amplifier [15, 161) of the 
radiative part of the spectral transform. 

In § §  4 and 5 we examine in more detail the evolution equations and the evolution 
of the spectral transform when the chosen a problem leads to either a hyperbolic 
differential operator TI or an elliptic one. 

The soliton-like solutions are obtained in § 6 which is devoted to the study of the 
Backlund transformations (BT). While the spatial part of the BT, being obtained from 
TI, is obviously the same as for polynomial dispersion relations, the method for deriving 
and solving the time part is quite different. It requires us to obtain first from the spatial 
part not only the potential but also the corresponding spectral transform. I t  is then 
by making this spectral transform evolve in time that the time part of the BT can be 
solved. We derive in this way the elementary BT which allows us to build a whole 
lattice of solutions by using the non-linear superposition principle [ 171. 

2. General method 

In the spectral transform method, the usually adopted approach consists first in giving 
a differential (with respect to the x y  space variables) linear operator T, together with 
its spectral eigenspace of function + ( k ,  x ,  y ) ,  for instance (matrix case) 

where E is some given function which solves 

{ lim T , } E  = O .  
x+--T 

Note that here E allows us to introduce the k dependence of the eigenfunctions + 
and therefore to set a spectral problem for a differential operator. Second, the standard 
approach consists in seeking operators T, (involving the additional variable t )  for 
which is required either the compatibility condition 

[TI, T J = O  (2.3) 

[TI, T*l+=O. (2.4) 

or its weak version [5,6] 

From the works quoted in [l-61 we know that the spectral problem (2.1) related 
to TI can be written and solved as a a problem on a complex domain 9 with boundary 
a 9  : 

k E 9  (2.5~1) 
a z+(k x, y )  = 

+ ( k , x , y ) E - ’ ( k , x , y ) - n  k + a 9 .  (2 .5b )  

I I, d l  I, d r @ ( l  x, y ) R ( k ,  1 )  
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The matrix R ( k ,  I )  is a distribution in 9 x 9 and E analytic in 9. We note that here 
the function E ( k ,  x, y )  is the tool for introducing an x-y dependence in the solution $ 
of (2.5) which, according to the Cauchy-Green formula, is 

Instead of the spectral problem (2.1), we adopt here as a starting point the a problem 
(2.5) and introduce a time dependence by prescribing the following linear evolution: 

(2.7) 

In the above equation n(k; t )  is a given matrix-valued function on 9 x R and is 
called the dispersion relation. It is worth mentioning that the t dependence is parametric 
in the sense that the basic equations (2.5) are maintained valid for any time t. In 
particular it is essential to take E to be time independent. 

Now, given the a problem (2.5) and the evolution (2.7), in other words given 
R ( k ,  I ;  0), E ( k ,  x, y )  and n ( k ,  t ) ,  we want to build a couple of compatible operators 
T,  and T2 (obeying (2.4)).  To that end, an essential assumption is that the a problem 
(2 .5) ,  or preferably the integral equation (2.6), has a unique solution. Only for some 
known examples is one able to give sufficient conditions on R ( k ,  1 )  to realise this 
requirement. But the general problem (or characterisation problem) of giving necessary 
and sufficient conditions such that (2.6) has a unique solution is not solved. 

Then, given the a problem (2.5) with some explicit function E ( k ,  x, y) ,  TI can be 
constructed by following the method of [13]. This will be done for completeness in 
the next section. 

R , ( k ,  I ;  t )  = R ( k ,  I ;  t ) n ( k ;  t)-n(1; t ) R ( k ,  1; t ) .  

We seek now T2 under the form 

T,=a,- W (2.8) 

T2+ = $Cl. (2.9) 

where W = W (  k, x, y,  t )  is a matrix to be determined, with the requirement 

The above condition ensures in particular that the weak compatibility condition (2.4) 
is satisfied. 

By differentiating (2.9) with respect to E and by using (2.5) and (2.7) we obtain 
for k E  9: 

a W  an - -- - - $ ( I C )  z$ ' ( k ) +  I dlr,  d r [  W(f)  - W ( k ) ] + ( I ) R ( k ,  l ) $ - ' ( k ) .  
aE 2 

(2.10) 

In the usual cases 0 is a polynomial in k ( a f l / a l = O )  and W is a differential 
operator; therefore (2.10) would be irrelevant and to compute T2 one should instead 
solve directly (2.3) or (2.4). Also (2.9) would imply the evolution (2.7) because the 
operators T2 and aE would commute (apply T2 on both sides of (2.5a)).  

Here, however, we are interested in the cases when the dispersion relation Cl is 
singular, i.e. when there exists a subset of $2 for which 

an 
- # O  k E  8. aE (2.11) 

Then (2.10) allows us to reconstruct W provided its behaviour on the boundary a 9  is 
given. This implies some conditions on Cl which depend on the chosen example and 
will be given later. 
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In summary, for non-analytic dispersion relations R, we are able to build from the 
2 problem a pair of operators TI and T2.  Then the weak commutativity condition (2.4) 
which is 

{ T1.f + [TI, W1)+ = 0 (2.12) 

is identically satisfied in 9. In particular it furnishes the k-independent equation 

lim {( TI , I  CL + [ TI, WIG) CL-' } = 0. (2.13) 

It is the solvable non-linear evolution which we were seeking and it is coupled to the 
spectral problem (2.1) through the solution W of (2.10). We shall see for an example 
in the next section that it is actually more convenient to replace the spectral problem 
with the following equation: 

k - a g  

a 
aE - I ( 7-1, I + + [ TI , WI cc, 1 + - } = 0. (2.14) 

We remark finally that the one-dimensional case corresponds to a local 3 problem 
R(k, Z)=R,(k)6(2-k) (2.15) 

and hence (2.10) becomes simply 

aw an -- - - 4 -  + - I  
a f  ak 

which allows us to build the operator T2 in closed form [7]. 

(2.16) 

3. An example of non-linear solvable evolution 

To give an example it is necessary to choose in the 2 problem (2.5) both the domain 
9 and the function E. Let 

9=@ a 9  = { k/ I kl = 00) 

E(k, x ,y)=exp[ ik(u ,x-~y)]  E2=*1 

We recall now the method [13] for obtaining the operator TI from the a problem 

The integral equation (2.6) provides the expansion 
(2.5) with the above boundary conditions. 

5 

+(k,x,y)-(  I+ 1 k-"4(") (x ,y)  exp[ik(u,x-ey)]. 
n = l  

(3.3) 

By assumption, R(k, I )  in (2.5) does not depend on the space variables and therefore 
t,b, and are also solutions of the equation ( 2 . 5 ~ )  with, however, a different behaviour 
as Ikl+ 00. The problem consists in finding a linear combination of t,hx and (L,, whose 
asymptotic behaviour can be related to that of $, independent of k. We obtain 

(3.4) 
The notation * means + when ~ ' = + 1  ( ~ = + l )  and -- when e 2 = - 1  ( ~ = - l ) .  

Therefore the quantity J ~ , * E ~ ~ I C I , .  is a solution of ( 2 . 5 ~ )  and has an asymptotic 
behaviour proportional (independently of k) to +. Then if, as assumed, we are in the 
case when the solution of (2.6) is unique, we have 

T , + = O  T~ = d, i E U , ~ , ,  + Q (3.5) 
Q = - i [ b " ' ( x ,  Y ) ,  U,]. (3.6) 

+x*~u3+,  -i[c,b('), m3][1 + O ( l / k ) ]  exp[ik(m,x-~y)]. 
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The spectral problem (3 .5)  is the linear 2 x 2 first-order two-dimensional generalisa- 
tion of the Zakharov-Shabat spectral problem and has been studied in [4]. For 
polynomial dispersion relations it allows us to solve the Davey-Stewartson system. 

As regards the auxiliary spectral operator T,, we select those dispersion relations 
R for which W vanishes on the boundary a 9  ( lkl-a) .  From (2.8) and (2.9), 

w = I//,+-’ - +,n+-1. (3.7) 

Choosing R diagonal as in one dimension we obtain 

W--R as Ik)+m 

and W will vanish with R. In summary, by selecting 

R=w(k ,  t)u3 w - O( 1 /  k )  as lkI+m (3.9) 

we avoid the appearance of polynomial terms in the solution W of (2.10). But we 
have to stress that this is only made to focus on ‘completely’ singular dispersion 
relations for convenience and simplicity. It is actually possible to generalise the 
procedure to the case when R has a polynomial part. This is done in appendix 1 .  

Now, with the structure (3.5) of T, ,  the weak compatibility condition (2.12) becomes 

(3.10) (a, * &u3a, ) w+ Q, + 10, WI * &[u3, WIG = 0 

in which the quantity 

G = +,$I-’ (3.11) 

is easily shown to obey 

(a, eu3dy)G+ Q, +[Q,  GI * e [ u 3 ,  GIG = 0 

with the behaviour 

(3.12) 

G -  - i&k+O(l /k)  as Ik)+w.  (3.13) 

It is convenient to introduce the distributions 

aG r=-  aw 
ak  a k  

@=7 

and the operator I k  inverse of aE  given by 

We also define for future use the average 

(3.14) 

(3 .15)  

(3.16) 

Using (3 .13)  and (3.8), the inverse of (3.14) is 

w=Ik@ G = -i &k I k  r . (3.17) 

With these notations in hand we may exploit (3.10) and (3.12) by first looking at 

(3.18) 

(3.19) 

the large-lkl asymptotics. It gives the set 

Qt + i[u,, (@)I = 0 

Q.I. + i [ u 3 r  m l  = 0. 
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Then we differentiate (3.10) and (3.12) with respect to E to obtain 

(a, * E U , ~ )  )@ + [ Q - i ka, , @] = F E [ a3, @I r k  (3.20) 

( a , i ~ ~ , a , ) r + [ Q - i k a , ,  r ]=+~[~ , , r ] z , r+~[a , ,  zkr]r. (3.21) 
The above set of four coupled equations for the quantities @, r and Q constitutes 

the general form of the solvable non-linear evolution associated with the 2 x 2 linear 
first-order system in the plane for singular dispersion relation. The relevant equation 
is the evolution (3.18) giving the time dependence of the matrix field Q. This evolution 
is coupled to the spectral problem (3.5) for $ through the matrix distribution 4 defined 
by (3.14) and (3.7) which, as will be seen later, plays the role of the 'squared 
eigenfunction'. Instead of considering (3.18) as being coupled to the spectral problem 
(3.5) itself, we may consider it as being coupled to the system (3.20) and (3.21). Then 
the equation (3.19) is automatically verified. We shall see in the next section how 
equations (3.20) and (3.21) which are written for distributions can actually be written 
for functions. 

This set of equations has to be completed with some boundary/initial values. Until 
now we have considered boundary values in the complex k plane only but it is more 
convenient (for physical reasons) to associate to the system (3.18)-(3.21) a set of 
boundary conditions in the space (xy) plane. 

The field Q(x, y,  t )  is constrained to obey 

E [ a3, I k  @]I- 

0 4 0  as x2+y2+oo (3.22) 
and it is shown in the following sections that 

w 4  -R as x+-m (3.23) 
an 

@4-- 
ak 

r+o G 4 iEk as x+--00 (3.24) 
at least in the sense of distributions. 

To prove these behaviours it is necessary to study separately the two cases E ' =  *I 
and to use explicitly the corresponding particular form of the a equation ( 2 . 5 ~ )  where 
R will appear to be an off-diagonal matrix. Both 2 problems and their solutions are 
recalled for completeness in appendix 2. The solutions have been originally given in 

A better insight into what is contained in equations (3.18)-(3.21) is provided by 
reducing them to one spatial dimension. In that case 

Q.,, = 0 c~(k, x, Y )  = c ~ d k ,  x) e-'FkL G = -iek r=o. (3.25) 
Then (3.21) and (3.19) disappear and the right-hand side of (3.20) vanishes. Still in 
that case (see (2.16) and (3.9)) 

141. 

(3.26) 

and therefore @,, vanishes. Finally the system (3.18)-(3.21) reduces to the couple 

(3.27) 

(3.28) 
identical to that of [7] (or [ I O ]  in a reduced case) where we can see that (3.28) is the 
spectral problem for the squared eigenfunction +a,$-' (factorise the distribution a w / a E  
in (3.28)). 
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Therefore from one to two dimensions we have schematically described the follow- 
ing stages. 

(i)  Define two matrices CP and r (distributions) analogue of the squared eigenfunc- 
tions (multiplied by d w / a F ) .  

(i i)  Complete the t evolution of Q related with ((3) (same as in one dimension) 
with the ‘ y  evolution’ of Q related with (r). 

(iii) Replace the polynomial spectral problem (3.28) for the squared eigenfunctions 
with two weakly coupled ‘singular-integral-spectral’ problems (3.20) and (3.21) for the 
new squared eigenstates and r. 

We may now sketch the method of solution. Given the data of Q(x, y, 0) obeying 
(3.22) and the diagonal matrix distribution dR/ak; the problem consists in solving 
(3.18)-( 3.21) with the boundary conditions (3.22)-(3.24). 

This is performed by solving first the direct spectral problem for (3.5) to obtain 
from Q(x, y ,  0) the eigenstate $( k, x, y ,  0) and the spectral transform R ( k ,  1,O) (see 
appendix 2). 

Then R ( k ,  1, t )  is obtained from R(  k, 1,O) by solving the linear equation (2.7) where 
is given in terms of an/aE by 

2i 7~ 1 - k  a i  (3.29) 

Q(x, y ,  t )  and $ ( k ,  x, y,  t )  are obtained by solving an appropriate integral equation 
for $ (see appendix 2). 

With $( k, x, y ,  t ) ,  W and G are readily computed by means of (3.7) and (3.1 1) and 
hence CP and r by means of (3.14) 

We note finally that the main information, that is the function Cl( k, t ) ,  is contained 
in the asymptotic behaviour (3.23) of CP. 

In concluding this section we remark that the construction of the solvable evolution 
for the singular dispersion relation for different spectral problems now becomes an 
exercise. The method that we have developed readily applies as soon as one has the 
2 problem and the corresponding spectral problem. 

4. Hyperbolic case ( E  = 1) 

We examine here in more detail the evolution equations and the evolution of the 
spectral transform when F = 1, that is when the spectral problem is 

T l ~ = O  T, = a, + u3ar. + Q. (4.1) 

In [4] the spectral problem for (4.1) is written under the form of a Riemann-Hilbert 
problem. We shall see in appendix 2 that it can be written also as a 2 problem (2.5) 
with the following particular form of R ( k ,  1) when Q obeys (2.22) (as in [4] we suppose 
that the integral equation has no homogeneous solution): 

k = k,  + i k ,  1 = lR  + il,. 
In the following we shall denote matrix (:* 2 )  by R 1 ,  
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The first thing to do  now is to prove that the asymptotic behaviours (3.23) and 
(3.24) hold. When $ is fixed by its behaviour as 1 k l - t ~  as in (3.3), it is possible to 
prove [4] that we have also 

$ ( k ,  x, y ,  t )  + exp[ika3x - iky] as x + --CO. (4.3) 
Therefore G defined in (3.11) obeys 

G ( k , x , y ,  r )+- ik  as x + -S 

and W defined in (3 .7)  

W(k,x,y, t)+-a(k, 1 )  as x +  -W. 

(4.4) 

(4.5) 
The distributions @ = a  W/aE given in (2.10) and r = aG/aE become after making 

use of (4.2) (we forget the x, y ,  r dependence) 

(4.6) 

V k )  = S ( k l  )rn(k) (4.7) 

r ~ ( k )  = j + K  dl lLy(UR~(k  O $ - ' ( k )  - lL,(k)+-'(k) 5 dl$(OR](k, l)+- '(k).  (4.8) 

These formulae are written in shorthand and we have to remember that, for instance, 
the first column of W( I ) $ (  I )  is actually taken at I + io and the second at 1 -io. In the 
same way (4.6) and (4.8) have to be read for k = k,*iO. 

By taking now the limit as x + -a of (4.6) and (4.8) and using (4.3), the off-diagonal 
character of R ,  and the diagonality of n imply that the behaviours (3.23) and (3.24) 
do hold in the sense of functions. 

As mentioned in the preceding section, equations (3.20) and (3.21) are written for 
the distributions @ and r and therefore are not convenient to describe a physical 
situation. But in (4.7) r is factorised which allows us to write (3.21) for the function 
T 0 ( k ) .  Equation (3.20) with @ given in (4.6) will be factorised in the same way if we 
choose 

t m  

--oc -m 

an 
-= g ( k ,  t)a36(k, 1 (4.9) a E  

or else 

(4.10) 
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where now we define 

(4.17) 

With these equations the following behaviours are given: 

Q + O  as x2+y2-,cc (4.18) 

ro+o as x+-m (4.19) 

@o+g(k, as x +  -W. (4.20) 

The set of equations (4.13)-(4.20) is solvable with the method given in 9 3. The 
corresponding evolution of the spectral transform 
is, for k, 1 E 58, 

is obtained from (2.7) and (4.2) and 

U- (  k, t )  O )  + U-( 1, t )  

where wf is 

d l  
w*(k, t )=Tig(k ,  t ) - l f  - g ( l ,  1 ) .  

IT I -k  

(4.21) 

(4.22) 

Depending on g ( k )  (asymptotic behaviour of @ in (4.20)) the time evolution of R I  
may present exponential growth or damping. In 1 + 1 dimensions the exponential 
damping causes the self-induced transparency phenomenon [ 101 and the exponential 
growth allows us to consider theoretical models for laser amplifiers [15,16]. These 
phenomena then occur also in 2+  1 dimensions. 

5. Elliptic case ( E  = -i) 

We now consider briefly the case when 

In the a problem (2.5),  the spectral transform R has the following form (see [4] and 
appendix 2): 

T,$=O TI = a, + ia3a,, + Q. (5.1) 

R(k, l )=iS(l-E)R>(k,E)  (5.2) 
where R2 is an off-diagonal matrix. 

The behaviours (4.3) and (4.4) become respectively 

(I, -, exp(ika,x - ky) 

and 

G + - k  as x + - m  

and the behaviour (4.5) still holds. Now we have 
@ ( k ) = [  W(E)- W(k)]$(E)R2(k, E ) $ - ' ( k ) - $ ( k ) ( a n / a E ) $ - ' ( k )  

r ( k )  = $, (E)R2(k, E)$-'(k)-$' (k)@-'(k)Jr([)R,(k, E)$-'(k) 
and hence ( k = k , + i k , )  

~ ( k ) - , - [ R ( E ) - n ( k ) ] R , ( k ,  E )  e-2'a3k~x -aR/aE 

T(k)+  ( k -  E ) R , ( k ,  E )  e - 2 ' u 3 k ~ x  e21ki'. 

(5.3) 

(5.4) 
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One may check that these behaviours are indeed compatible with the evolutions (3.20) 
and (3.21) when x +  -CO, as soon as R2 anticommutes with uj and 0 commutes with 
u3. 

The above asymptotic behaviours verify (3.23) and (3.24) only in the sense of 
distributions. However, they are bounded and their main property is that they depend 
on the spectral transform R2 which itself can be expressed in terms of 4 and Q. Thus 
we have here a kind of new non-linear asymptotic behaviour. Note that these behaviours 
do not affect the evolutions (3.18) and (3.19) where CP and r are integrated on C 
through the definition (3.16) of the average. 

By choosing 

aR/aE= h(k, & t)u3 ( 5 . 7 )  

equations (3.20) and (3.21) are directly written in terms of functions. 
The set (3.18)-(3.21) with the boundary conditions (5.5) and (5.6) is integrable 

with the method of 8 3. The corresponding evolution of the spectral transform gives 

R,(k, k; t )  = exp( -lof d t  Z ~ h u ~ ) R ~ ( k ,  E, 0) exp( lof d t  Zkhu3). ( 5 . 8 )  

(The operator Zk is defined in (3.15).) 

6. Backlund transformations and soliton solutions 

The general method to establish and solve (for soliton solutions) the Backlund transfor- 
mations in 2 +  1 dimensions is given in detail in [ 171. In short the Backlund gauge B 
(operator) which links the two potentials Q and Q’ and their corresponding eigenstates 
+ and +’ via 

+’ = E+N (6.1) 

is determined up to some constants of integration by the operator equation 

TI B -  BT, = O .  (6.2) 

In (6.1) N is a constant (k-dependent) matrix used to normalise 4‘ as in (2.56). 
The requirement that Q and Q’ solve the same evolution is equivalent to the equation 

T ; B -  BT2=O (6.3) 

and allows us to determine the time dependence of the constants of integration. 

and (6.3) for the choice 
The simplest non-trivial Backlund transformations are obtained by solving (6.2) 

B = a d , + B ,  (6.4) 

where CY is a constant diagonal matrix. 
Inserting (6.4) into (6.2) with T, given in (3.5) allows us to prove that 

(6.5) B , -2 - ,&U3(QtCY -aQ)-f&u3CYJ,(Q’*-Q2)+p 

where p is a constant diagonal matrix, and gives the Backlund transformation 

- t & a 3 ( d x  f & U j d , , ) (  Q’CY - CYQ) + Q’p - P Q  - CYQ, 

+ ~ E u ~ { c Y [ J , (  Q t 2  - Q 2 ) ] Q +  Q‘cYJ, (  Q t 2  - 0’)) = 0. (6.6) 
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In the above equations the integral operator J, is defined by its action on a generic 
diagonal matrix by 

) (6.7) 
a[x‘,y*E(X’-X)] 0 

.IE(’ 0 b O) = Ix --5 dx’(  0 b[x’, y * E(x’- x)] 

such that 

( a ,  * E U , ~ , ) J ,  =U. 
The equation (6.6) is called the ‘x part’ of the Backlund transformation and does 

not depend on the operator TI.  Choosing T2 as in (2.8), (6.3) then gives the so-called 
‘ t  part’ 

(6.9) a,G + B,,, = ( W’a - a W ) G  + W’BI - B ,  W - (Y W,. 

We recall that as x + --CO we have 

B+aa,+p G + -iEk w + -0u3 W’+ - 0 ~ 3 .  (6.10) 

(In T2 and T i  we choose the same dispersion relation OU, to ensure that Q and 
Q’ obey the same evolution.) Taking the limit of (6.9) as x +  -00, we obtain 

a,=O p, = 0. (6.11) 

For future use we then express (6.9) in the following form: 

W’ = [B, , ,  + B ,  W +  a (  WG+ W,)][B, + aG]-’. (6.12) 

The two elementary Backlund transformations are obtained for the two choices 

(6.13) 

(6.14) 

where A and p are arbitrary constants. 
A successive application of these two elementary transformations allows us to build 

recursively a whole lattice of solutions [17]. We are going now to derive the explicit 
formulae when the starting potential Q vanishes. To that end we have to consider 
separately the two cases E‘ = k l .  

6.1. Hyperbolic case ( E  = 1 ) 

In the case Q = 0 the solutions of (6.6) for the two elementary structures (6.13) and 
(6.14) are respectively (we drop the primes whenever it is not ambiguous) 

(6.15) 

(6.16) 

where p and 71 are arbitrary functions to be determined and where the signs of the 
real parts of A and p are chosen such that Q vanishes as x + -a. 
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The corresponding gauge operators are then obtained from (6.4) and (6.5) 

(6.17) 

(6.18) 

The usual standard method to compute p and 7) is to use the t part (6.9) of the 
transformation. Here, however, this method is useless because W' is not explicitly 
given in terms of Q'. To perform the computations we shall use a different approach 
which proceeds through the following stages. 

(i) Compute the eigenfunction +' for the potentials Q"' and Q"". 
(ii) Compute the spectral transforms by evaluating a+/ak: This will give both 

R ( k ,  I )  and the structure of the xy dependence of p and 7. 
(iii) Make these spectral transforms evolve in time according to (2.7) which fur- 

nishes the time dependence of p and 7 and achieves the derivation of the elementary 
Backlund transformations. 

We note first the following relations: 

(6.19) 

Then the Jost solutions 4") and @ ' I '  are obtained from the definition (6.1) of the 

Q = o+{+ = eik(u3x- .v)  , G = -ik, W = -mu,} .  

gauge operator B. With appropriate choice of N we get 

' e i ( k + i h ) ( x - y l  + Pa- 
( I )  - i k ( u 3 x - y l  

2(k+iA)  IC, - e  (6.20) 

(6.21) 

U + = ( ;  ;) 0 0  o). 

Hence 

a 
aE 
a 

aE 

- $ ( I ) =  d ( k + i A ) p a -  (6.22) 

- + ( I " =  - .rra(k+ip)vu+. (6.23) 

We use now explicitly (2 .5) ,  in which we replace CL by @'" and t,hi"), with the 

p ( x + y , t ) = j  I dlr\dTe-"(""p'(I,t) (6.24) 

~ ( x - y ,  t ) = [  [dlndTe'"" 'f( l ,  t )  (6.25) 

following definitions: 

to obtain the following spectral transforms of Q"' and Q"": 

R " ' ( k ,  I) = .rra(k+iA)F(I, t )u .  

R""(k,  I )  = - d ( k + i p ) f ( I ,  t)u+. 

(6.26) 

(6.27) 
Note that the structure (4.2) of R does not hold here because the potentials Q"' and 
Q"" do not verify (3.22). 
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The time evolution (2.7) for 0 = w u 3  readily gives 

(6.28) 

(6.29) 

which achieves the construction of Q'" and Q'"' together with their eigenfunctions 
$ ( I '  and $ ( I " .  Note t.hat the spectrum of Q"' (Q"")  consists in one discrete eigenvalue 
located in the upper half-plane: k = - iA  (the lower half-plane: k = -ip) as seen on 
(6.26) and (6.27), remembering that Re A < 0 and Re p > 0. 

To complete the derivation of the solution of the non-linear evolution (3.18)-(3.21) 
we need G' and W'. G'= $.;.$'-I is obviously computed from $ ( I )  and $ ' I "  and W' 
is given by (6.12) in terms of Bl (obtained in (6.17) and (6.18)), a and the couple 
( G ,  W) given in (6.19). We get 

i 
2(k +iA) 

i 
2( k + ip) 

W"' = -U(+, + 

W"" = -w(+3 - 

[ QI" - 2wQ"'l 

[ Qy' + 2wQ'"'I 

(6.30) 

(6.31) 

It is then possible to check that W"' and W"" are indeed solutions of (2.10) in 
which R"' and R"" are given in (6.26) and (6.27) and $ ' I )  and $'") in (6.20) and (6.21). 
6.2. Elliptic case ( E  = - i )  

The method being exactly the same as for the hyperbolic case we only list below the 
relevant formulae ( p  and 7 and two other arbitrary functions) 

(6.32) 

(6.33) 

(6.34) 

(6.35) 

(6.36) 

(6.37) 

(6.38) 

(6.39) 

(6.41) 

(6.42) 

(6.43) 
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6.3. Non-linear superposition 

It is well known that the non-linear superposition principle (or Bianchi theorem) allows 
us to build a solution from three known ones through simple algebraic steps. Moreover 
the formula is derived in [ 171 for evolutions in 2 + 1 dimensions related to the spectral 
problem (3 .5)  and makes no reference to the time evolution. We shall therefore only 
sketch the results. 

The gauge operator B which allows us to go from the vanishing solution to the 
one-soliton solution is given by 

B + B ~ ) B ( A ) = B ( A ) B B ' F )  10 32 20 * (6.44) 

In the above formula BF' ( B F ' )  represents the elementary gauge operator of type 

With the notation Q1 = Q'", Q2 = Q"" and 
I (type 11) which allows us to obtain the potential Q, from the potential Q, [17]. 

Q 3 = ( :  04) QI=(: :) Q 2 = ( 0  0 9 2  ,,) 
we obtain from (6.44) the following soliton solution: 

The corresponding eigenfunction is obtained by using 
1 2  1 0  A - Z E  r ,q  - - f E q  

B = ( o  l )a ,+ (  Ier 1 p -$E2q2r 

and for the following appropriate choice of N :  

This eigenfunction finally becomes 

(6.45) 

(6.46) 

6.1 ) for B given by (6.44) as 

(6.47) 

e i k ( u 3 x  - ~y 1 

9 
-+E 

1 2 r1q 
( A  -iEk) ( p  -iek) 
E r  

1 -a& 

1 -aE' q z r  
2(A - k k )  ( p  - i E k )  

and the corresponding spectral transforms are 

(6.48) 

(6.49) 

(6.50) 

(6.51) 

The one-soliton solution of the system (3.18)-(3.21) is completed with the computa- 
tion of G ' =  $by$-' and I"= (d/aE)G' ( $  given in (6.49)), then of W' through (4.12) 
where Bl is obtained in (6.47), W =  --UT,, a = 11 and G = -ik(E = - i )  or -k(E = l),  
and finally of 0' = a W'/dk: 
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As shown in [ 171 one may then construct a whole lattice of solutions by superimpos- 
ing arbitrary numbers of elementary transformations of the two types. 

Acknowledgments 

MB, LM and FP are grateful for the friendly hospitality of the Laboratoire de Physique 
MathCmatique in Montpellier. 

Appendix 1. Generalisations of the evolutions 

Instead of choosing a vanishing dispersion relation as in (3.9) we may set 

sz = wU3 w = w , + w p  us- O ( l / k )  l k l - $ a  (Al . l )  

where up is some given polynomial in k. 
Then T2 is sought in the form 

T,=a,- W -  V (A1.2) 

where W = W(k, x, y, t )  is a matrix and 9 = ?(a,,, x, y, t )  is a polynomial differential 
operator in a,,. 

The weak compatibility condition (2.4) gives 

{Q,+[Tl, WI+[T,, QI1+=0 

for 

T,  = a, * E U ~ ~ , ,  + Q 

and with the requirements analogous to (4.5): 

(Al.3) 

(A1.4) 

w -$ -w,u3 as x+-m (Al.5) 

p+ - -wpu3 exp[ik(u,x - ~ y ) ]  (Al.6) as x -f -m. 

The matrix W is computed exactly as in the preceding sections (solution of (2.10)) 
and the operator V is computed as usual by asking that for 

(A1.7) 

we have, together with (A1.6), 

C'J' = 0 j = 0, . . . , n - 1. (A1.8) 

Equation (A1.8) allows us to compute recursively ? in terms of Q. 
The resulting evolution for Q is 

Qf + C(" '+i[u3,  (O)] = 0. (Al.9) 

This equation associated with (3.19)-(3.21) and the boundary conditions (3.23) and 
(3.24) (note that an/aE = u3dw,/dE)  constitutes the most general solvable evolution. 
In (A1.9) the quantity Qf + C'"' simply stands for any equation of the (polynomial) 
hierarchy of non-linear evolution equations associated with T ,  (see [4, 181). 
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Appendix 2. 3 problem and Riemann-Hilbert problem 

We give hereafter the essential formulae obtained in [4] when the spectral operator 
TI is given in (3.5). The main point is to extract from [4] the formulae that we need, 
namely (4.2) and (5.2), in our notation. 

In the hyperbolic case ( E  = 1)  it is shown in [4] that the function 

F ( k ,  x, Y )  = *(k, x, Y )  exp[-ik(a,x - Y ) l  (A2.1) 

tending to I as lkl+ CC can be constructed by solving the following Riemann-Hilbert 
problem on the real axis: 

t X  

p ' ( k ) - g - ( k ) =  d / p - ( l )  e""3'-"9(l, k)e-"("~ ' - ' '  (A2.2) 

(A2.3) 

(A2.4) 

The direct spectral problem, namely the construction of the spectral data, is solved 
[4] by using 

x exp[iu,(I+ k ) x  - i ( l -  k)y]. 

Our point is that the relation (A2.4) is precisely the condition that allows us to write 
(A2.2) as 

p + ( k )  - p - ( k )  

d l  ( p ; ( l ) ,  pr ' (1 ) )  e"''3x-y) 

(A2.5) 

where p1 stands for the first column (and p2 the second) of the matrix p. Rewriting 
finally (A2.5) for the original function C$ and remembering the Sokhotski-Plemelj 
formula 

all, i 
a&- 2 [$(b+iO)-(L(kR -io)] (A2.6) 

we obtain (remembering that pt - p -  vanishes as (Y + -a [4]) 

(A2.7) 
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Concerning the elliptic case, if we assume no homogeneous solution of the integral 
equation, the formula (4-21) of [4] written in terms of 9 gives directly 

= +( E)R,( k, E )  aE 
(A2.9) 

and therefore is obtained from (2.5) with the structure (5.2) of R. 
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